Name:	Date:
Elementary Statistics	Period:

Chapter 7 Test Review:

Confidence Intervals and Sample Sizes

- 1. Identify the distribution (normal, student t, or chi-square) that applies to each of the following situations. If none of the three distributions is appropriate, then state so.
 - a. In constructing a confidence interval of μ , you have 50 sample values and they appear to be from a population with a skewed distribution. The population standard deviation is not known.
 - b. In constructing a confidence interval estimate of μ , you have 50 sample values and they appear to be from a population with a skewed distribution. The population standard deviation is known to be 18.2 cm.
 - c. In constructing a confidence interval estimate of σ , you have 50 sample values and they appear to be from a population with a skewed distribution.
 - d. In constructing a confidence interval estimate of σ , you have 50 sample values and they appear to be from a population with a normal distribution.
 - e. In constructing a confidence interval estimate of p, you have 850 survey responses and 10% of them answered "yes" to the first question.
- 2. Based on data from the Journal of the American Medical Association, the following confidence interval estimates the proportion of female medical students: 0.449 < p < 0.511
 - a. What is the best point estimate of the proportion of females in the population of medical school students?
 - b. What is the margin of error?

- 3. You have been hired by a college foundation to conduct a survey of graduates.
 - a. If you want to estimate the proportion of graduates who have made a donation to the college after graduation, <u>how many graduates</u> must you survey if you want 98% confidence that your proportion has a margin of error of 5 percentage points?

 b. If you want to estimate the mean amount of all charitable contributions made by graduates, <u>how many graduates</u> must you survey if you want 98% confidence that your sample mean is in error by no more than \$50? (Based on results from a previous study, assume the standard deviation of donations by graduates is \$337)

c. If you plan to obtain the estimates described in parts a and b with a single survey having several questions, <u>how many graduates</u> must be surveyed?

- 4. In a Gallup poll of 557 randomly selected adults, 284 said that they were underpaid.
 - a. Identify the best point estimate for the proportion of all adults who say that they are underpaid.
 - b. Construct a 95% confidence interval estimate for the proportion of all adults who say that they are underpaid.

- c. Can we safely conclude that the majority of adults say that they are underpaid?
- 5. Data set 1 in Appendix B includes a simple random sample of 7 crash test measurements for small cars. The sample data has a mean of 42.7 g and a standard deviation of 5.6 g, where g is a force of gravity. Use the sample data to <u>construct a 95% confidence interval estimate of the mean chest deceleration measurement for the population of all small cars</u>. (Assume that the sample is a simple random sample and the data is from a normally distributed population.)

6. Use the same sample data from question 4 to <u>construct a 95% confidence interval estimate of</u> <u>the standard deviation of chest deceleration for the population of all small cars.</u>

7. If you wanted to construct a confidence interval estimate of the standard deviation of chest deceleration with a 99% level of confidence and a margin of error of 10%, how many small cars would you need to include in the sample?

Sample Size for σ^2		Sample Size for σ	
To be 95% confident that s ² is within	of the value of σ^2 , the sample size <i>n</i> should be at least	To be 95% confident that s is within	of the value of σ , the sample size <i>n</i> should be at least
1%	77,207	1%	19,204
5%	3,148	5%	767
10%	805	10%	191
20%	210	20%	47
30%	97	30%	20
40%	56	40%	11
50%	37	50%	7
To be 99% confident that <i>s</i> ² is within	of the value of σ^2 , the sample size <i>n</i> should be at least	To be 99% confident that s is within	of the value of σ , the sample size <i>n</i> should be at least
1%	133,448	1%	33,218
5%	5,457	5%	1,335
10%	1,401	10%	335
20%	368	20%	84
30%	171	30%	37
40%	100	40%	21
50%	67	50%	13